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“Clinical” vs Actuarial Approaches

Clinical Versus Actuarial Judgment

RoBYN M. DAWES, DAviD Fausr, PauL E. MEEHL

Professionals are frequently consulted to diagnose and
predict human behavior; optimal treatment and planning
often hinge on the consultant’s judgmental accuracy. The
consultant may rely on one of two contrasting approaches
to decision-making—the clinical and actuarial methods.
Research comparing these two approaches shows the
actuarial method to be superior. Factors underlying the
greater accuracy of actuarial methods, sources of resis-
tance to the scientific findings, and the benefits of in-
creased reliance on actuarial approaches are discussed.

Dawes, R.M., Faust, D., & Meehl, P.E.(1989).

a clinical practitioner. A clinician in psychiatry or medicine may use
the clinical or actuarial method. Conversely, the actuarial method
should not be equated with automated decision rules alone. For
example, computers can automate clinical judgments. The computer
can be programmed to yield the description “dependency traits,”
just as the clinical judge would, whenever a certain response appears
on a psychological test. To be truly actuarial, interpretations must be
both automatic (that is, prespecified or routinized) and based on
empirically established relations.

Virtually any type of data is amenable to actuarial interpretation,
For example, interview observations can be coded quantitatively
(patient appears withdrawn: [1] yes, [2] no). It is thereby possible
to incorporate qualitative observations and quanrirarive dara inte

Science, 243, 1668-1674.



“Clinical” vs Actuarial Approaches

+ Human raters
+ Good source of possible algorithms

+ Lousy at reliably implementing them
+ Inter-rater
+ Intra-rater

+ Actuarial methods
+ Always arrive at the same conclusion

+ Weight variables according to actual
predictive power

Dawes, R.M., Faust, D., & Meehl, P.E.(1989). Science, 243, 1668-1674.




Algorithmic EEG Artifact Approaches

+ Amplitude criteria

+ Too sudden: 100uV between samples
+ Activity criteria

+ Too big: 250uV/2sec epoch

+ Too small: <0.5 uV range across 100ms

+ Regression-based EOG correction

+ Can we make ICA-based correction
algorithmic?



What is ICA?

+ ICA is a "blind source separation”
technique.

+ ICA separates sources of activity that are
mixed together at recording electrodes.
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What is ICA?

+ For EEG data

+ Channel data (X) can be thought of as a
weighted (W) combination of independent
component activations (Wx), each of which
has a scalp projection (W-1).

+ You can think of ICs as putative sources
of the scalp-recorded EEG.



ICA Decomposition
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Abstract

A successful method for removing artifacts from electroencephalogram (EEQG) recordings is Independent Component
Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic
algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific
spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities
on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST’s classification of
independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2)
Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-
related potentials from heavily artifacted data. These results demonstrate that ADJUST provides a fast, efficient, and
automatic way to use ICA for artifact removal.



Winkler et al. Behavioral and Brain Functions 2011, 7:30
http://mww . behavioralandbrainfunctions.com/content/7/1,/30
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Automatic Classification of Artifactual ICA-
Components for Artifact Removal in EEG Signals

Irene Winkler, Stefan Haufe and Michael Tangermann

Abstract

Background: Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the
algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCl) or for Mental State Monitoring). While
hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG
data is widespread, the field could greatly profit from automated solutions based on Machine Leaming methods.
Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been
shown to reliably identify muscle artifacts.

Methods: We propose an automatic method for the classification of general artifactual source components. They
are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based
on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of
features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on
640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain
sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new
data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCl paradigm, n =
80) that used data with different channel setups and from new subjects.

Results: Based on six features only, the optimized linear classifier performed on level with the inter-expert
disagreement (<10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-
calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we
demonstrate that the discriminant information used for BCl is preserved when removing up to 60% of the most
artifactual source components.

Conclusions: We propose a universal and efficient classifier of ICA components for the subject independent

removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and

supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the

detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of
different EEG studies.
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ARTICLE INFO ABSTRACT
Article history: Background: Electroencephalographic data are easily contaminated by signals of non-neural origin. Inde-
Received 2 July 2014 pendent component analysis (ICA) can help correct EEG data for such artifacts. Artifact independent
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components (ICs) can be identified by experts via visual inspection. But artifact features are sometimes
ambiguous or difficult to notice, and even experts may disagree about how to categorise a particular com-
ponent. It is therefore important to inform users on artifact properties, and give them the opportunity to

intervene.
EE{WGMS" New Method: Here we first describe artifacts captured by ICA. We review current methods to automatically
ICA select artifactual components for rejection, and introduce the SASICA software, implementing several
Artifact novel selection algorithms as well as two previously described automated methods (ADJUST, Mognon
Pre-processing et al. Psychophysiology 2011;48(2):229; and FASTER, Nolan et al. ] Neurosci Methods 2010;48(1):152).
EEGLAB plugin Results: We evaluate these algorithms by comparing selections suggested by SASICA and other methods

to manual rejections by experts. The results show that these methods can inform observers to improve
rejections. However, no automated method can accurately isolate artifacts without supervision. The com-
prehensive and interactive plots produced by SASICA therefore constitute a helpful guide for human users
for making final decisions.
Conclusions: Rejecting ICs before EEG data analysis unavoidably requires some level of supervision. SASICA
offers observers detailed information to guide selection of artifact ICs. Because it uses quantitative param-
eters and thresholds, it improves objectivity and reproducibility in reporting pre-processing procedures.
SASICA is also a didactic tool that allows users to quickly understand what signal features captured by
ICs make them likely to reflect artifacts.

© 2015 Elsevier B.V. All rights reserved.
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Table 1

Measures computed by the three automated tools evaluated here. Abbreviations refer to those used in figures and throughout the paper.

M. Chaumon et al. / Journal of Neuroscience Methods 250 (2015) 47-63

Tool Artifact type Measure Abbreviation
SASICA Blinks/vertical eye movements Correlation with vertical EOG electrodes CorrV

Horizontal eye movements Correlation with horizontal EOG electrodes CorrH

Muscle Low autocorrelation of time-course LoAC or AutoCarr

Bad channel Focal channel topography FocCh

Rare event Focal trial activity FocTr

Non dipolar component Residual variance ResVar

Bad channel Correlation with Bad channel CorrCh
FASTER Eye blinks/saccades Correlation with EOG electrodes EOGcorr

“Pop-Off” Spatial Kurtosis SK

White noise Slope of the power spectrum Spec5l

White noise Hurst exponent HE

White noise Median slope of time-course MedGrad
ADJUST Eye blinks Temporal Kurtosis TK

Eye blinks Spatial average difference SAD

Eye blinks Spatial variance difference SVD

Vertical Eye Movements Maximum epoch variance MEV

Horizontal Eye Movements Spatial eye difference SED

Generic Discontinuities Generic discontinuity spatial feature GDSF

Chaumon et al., 2015
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Blink
components

Expected properties

Frontal
topography

Large amplitude

Opposite polarity
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No peak at
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Horizontal eye

movement components

D
Expected properties
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Non-artifact components may be
mistaken for ocular components
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Other types of artifacts may be
mistaken for muscle components

Expected properties

Irregular/patchy
topography

Irregular / low frequency
noise

Stimulus evoked
response
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Bad Channel
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Focal (one channel)
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Ambiguous mixture
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Rare Events

A

Expected properties

Few high amplitude
events in otherwise
low amplitude
time courses

High spatial / intertrial
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What is ADJUST?

AD]JUST= Automatic EEG artifact Detection
based on the Joint Use of Spatial and
Temporal features

® Automatic ICA-based algorithm that
identifies artifact-related IC components

® Uses both spatial and temporal distributions

® Combines stereotyped features to
efficiently and systematically reject an
artifact

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



How does it work?

® FEG is decomposed into ICs (done in EEGlab)

® ICs defined only by statistical relationships.

® It knows nothing about where electrodes are

® Detectors are applied for 4 types of artifacts

® Computes class-specific spatial and temporal
features on all ICs

® Each feature has a threshold dividing artifacts from
non-artifacts

B For each detector, ICs identified as artifacts if
features associated with the artifact exceed
their respective threshold.

Mognon, Jovicich, Bruzzone, & Buiatti, 2010
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MARA: Six features derived from machine learning algorithm

. Current Density Norm: ICA scalp maps can be interpreted as EEG
potentials for which the location of the sources can be estimated. It is
natural that artifactual signals originating outside the brain can only
be modeled by rather complicated sources. Those are characterized
by a large |2-norm, which MARA uses as a feature.

. Range Within Pattern: The logarithm of the difference between the
minimal and the maximal activation in a scalp map. Spatially localized
scalp maps stemming from e.g muscle artifacts or loose electrodes are
typically characterized by a high Range Within Pattern.

. Mean Local Skewness: The mean absolute local skewness of time
intervals of 15s duration. This feature aims to detect outliers in the
time series.

. A and Fit Error: These two features describe the deviation of a
component’s spectrum from a prototypical 1/f curve and its shape.

. 8-13 Hz: The average log band power of the a band (8-13Hz). This
feature aims to detect the typical a peak in components of neural
origin.

Winkler et al., 2011



Pre-Processing Steps for ICA Artifact Rejection

1. A rough pre-cleaning of the data by e.g. channel

rejection and trial rejection may be performed. This step is usually
helpful for obtaining a good ICA decomposition.

2. Filter: asica decomposition is known to be sensitive to slow

drifts, high pass filtering the data (at 0.5 Hz or even 2 Hz) can
sometimes improve the quality of the decomposition. Note that
MARA might lead to suboptimal results on narrow band-passed
filtered data, because its spectrum features are calculated on the
power spectrum between 2 Hz and 39 Hz.

3. Run ICA! Tools>Run ICA calculates ICA decomposition: The option

’pca’ can be set to perform a dimensionaliy reduction prior to IC
computation. Such a step may be helpful, in order to reduces the
noise level and avoid an unnatural splitting of sources. (It also makes
|IC computation faster and reduces and the number of components
that have to be labeled.)

Winkler et al., 2011






The following slides were not used, but may be helpful, and
derive from Laura Zambrano-Vazquez’s talk about ADJUST



Features +
B Spatial Average Difference (SAD) (‘3‘34}‘

® Spatial topography of blink ICs
" Looks for higher amplitude in frontal vs. posterior areas

Eye Blink Vertical Eye
Movement
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® Temporal Kurtosis (TK)

B Kurtosis over the IC time course

® Kurtosis is "peakedness" of the distribution (i.e. distribution of
timepoints in the epoch)

® Looks for outliers in amplitude distribution typical of blinks

Mognon, Jovicich, Bruzzone, & Buiatti, 2010



Features
® Maximum Epoch Variance (MEV)

® Is a ratio of variance in epoch with most variance compared
to mean variance over all epochs

" Looks for slower fluctuations typical of vertical eye
movement

® Spatial Eye Difference (SED)

® Looks for large amplitudes in frontal areas in anti-
phase typical of horizontal eye movement

® Generic Discontinuities Spatial Feature (GDSF)g

® Looks for local spatial discontinuities



Where to begin?
® Pre-processing

® Clean file for non-stereotyped ‘“gross artifacts”

® AKA Muscle activity and other external factors

® Variable spatial distribution that could take up a lot of ICs

" Low-Pass filtering, if appropriate for your data, can remove some

artifacts and prevent so many ICs from capturing these higher-
frequency noise artifacts

= IcAa

® Trom EEGIlab or, if not performed already, can be called from
ADJUST

® Run ICA’d files with ADJUST

® Import dataset into EEGLab~> Tools > ADJUST OR
® Use script and select file
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Evaluating Discontinuities.
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J Scroll component activities - eegplotd)
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'.i Scroll component activities - eegplot{)y
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Evye blinks

Eye Blink

B Features used

>
=
Q.
)
—
o
o
Q.
o

® Spatial Average Difference (SAD)
® Temporal Kurtosis (TK)

® Frontal distribution

features

" High power in delta frequency band | mﬂ

EB VEM HEM GD

® In component data scroll high potentials with
morphology of eye blink (like in EEG) can be
observed
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artifacts
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Vertical Eye Movement

® Features used
® Spatial Average Difference (SAD)
® Maximum Epoch Variance (MEV)

® Frontal distribution similar to that of
an eye blink
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<) Scroll component activities -- eegplot()
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Horizontal Eye Movement

B Features used S—

Movement

® Spatial Eye Difference (SED)
® Maximum Epoch Variance (MEV)

® Frontal distribution in anti-phase
(one positive and one negative)
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Generic Discontinuities

Features used

®  Generic Discontinuities Spatial Feature (GDSF)

Generic Discontinuity

® Maximum Epoch Variance (MEV)

Variable distribution

Sudden amplitude fluctuations with no
spatial preference

® Could be present in as little as one or 2 trials,
and limited to 1 channel

EB VEM HEM GD

In component data scroll weird activity in
the trial plotted on the IC activity



GDSF and MEV
features over
threshold

Variable
distribution even
at a single
channel

IC activity shows a
lot of variability
across epochs and
doesn’t show one
as responsible

7
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Sample Files

Under L:\Projects\OC_Worry\Physiodata

® Few ICs

B 7]14flankers.cnt.ICA.MAT

B A lot of ICs
B 770flankers.cnt.ICA.MAT
- 101pl.cnt.ICA.MAT




